



## Course Information Form

| Title                       | Code    | Local Credit | ECTS | Lecture (hour/week) | Practical (hour/week) | Laboratory (hour/week) |
|-----------------------------|---------|--------------|------|---------------------|-----------------------|------------------------|
| Intelligent Control Systems | KOM5101 | 3            | 7.5  | 3                   | 0                     | 0                      |

|              |      |
|--------------|------|
| Prerequisite | None |
|--------------|------|

|          |        |
|----------|--------|
| Semester | Spring |
|----------|--------|

|                  |                    |
|------------------|--------------------|
| Course Language  | English            |
| Level Of Course  | Second Cycle       |
| Course Category  | Major Area Courses |
| Mode Of Delivery | Face-to-Face       |

|                     |                                                  |
|---------------------|--------------------------------------------------|
| Owner Academic Unit | Department of Control and Automation Engineering |
| Course Coordinator  | Claudia Fernanda Yaşar                           |
| Instructor(s)       | Claudia Fernanda Yaşar                           |
| Asistant(s)         |                                                  |

|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Objectives                       | To introduce intelligent-based control systems to overcome modelling difficulties and to use computationally efficient procedures for directing a complex system. Intelligent control systems include expert systems, machine learning, and deep learning, among others, and have a high-level decision-making scheme that generates the control signal based on a qualitative or heuristic understanding of the process.                  |
| Course Content                          | Intelligent Control Systems: Computational Thinking Tools for Control Engineers, Dynamical System Modeling, Model Predictive Control MPC, Data-driven modelling, data-driven control techniques Introduction to machine learning, Introduction to deep learning, Introduction to reinforcement learning Information-Theory Models, General Applications on Motor Control Systems, Robotic Control Systems, and Control System Reliability. |
| Recommended Optional Program Components | None                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Course Learning Outcomes |                                                                                                                                                                                                                        |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                        | To enable students to comprehend the fundamental principles underlying intelligent systems and their application in modelling, identification, and management of complex engineered systems.                           |
| 2                        | To provide students with the skills to analyze dynamics and control systems, and to evaluate the practical considerations involved in experimental or simulated structures, employing computationally efficient tools. |
| 3                        | To raise a comprehensive understanding among students of various data-driven modelling and data-driven control applications, enabling them to undertake a specific project and assess system performance effectively.  |

| Weekly Subjects and Related Preparation Studies |                                                                                      |                     |
|-------------------------------------------------|--------------------------------------------------------------------------------------|---------------------|
| Week                                            | Subjects                                                                             | Related Preparation |
| 1                                               | Introduction to intelligent control systems (knowledge-based vs data-driven systems) | Course Notes        |
| 2                                               | Computational tools for Control Engineers                                            | Course Notes        |

|    |                                        |              |
|----|----------------------------------------|--------------|
| 3  | Dynamical systems modelling            | Course Notes |
| 4  | MPC Model Predictive Control           | Course Notes |
| 5  | Introduction to machine learning       | Course Notes |
| 6  | Data-driven modeling                   | Course Notes |
| 7  | Data-driven modeling                   | Course Notes |
| 8  | Midterm 1 / Practice or Review         |              |
| 9  | Data-driven control techniques         | Course Notes |
| 10 | Data-driven control techniques         | Course Notes |
| 11 | Introduction to Deep Learning          | Course Notes |
| 12 | Introduction to Reinforcement Learning | Course Notes |
| 13 | Applications                           | NA           |
| 14 | Applications                           | NA           |
| 15 | Practical Studies                      | Course Notes |
| 16 | Final                                  |              |

### Evaluation System

| Activities                                 | Number | Percentage of Grade |
|--------------------------------------------|--------|---------------------|
| Attendance/Participation                   |        | 10                  |
| Laboratory                                 |        |                     |
| Application                                |        |                     |
| Field Work                                 |        |                     |
| Special Course Internship (Work Placement) |        |                     |
| Quizzes/Studio Critics                     |        |                     |
| Homework Assignments                       | 1      | 30                  |
| Presentations/Jury                         | 1      | 10                  |
| Project                                    | 1      | 30                  |
| Seminar/Workshop                           |        |                     |
| Mid-Terms                                  | 1      | 20                  |
| Final                                      |        |                     |
| <b>Percentage of In-Term Studies</b>       |        | 100                 |
| <b>Percentage of Final Examination</b>     |        |                     |
| <b>TOTAL</b>                               |        | 100                 |

### ECTS Workload Table

| Activities   | Number | Duration(Hour) | Total Workload |
|--------------|--------|----------------|----------------|
| Course Hours | 16     | 3              | 48             |
| Laboratory   |        |                |                |
| Application  |        |                |                |
| Field Work   |        |                |                |

|                                                               |    |    |      |
|---------------------------------------------------------------|----|----|------|
| Study Hours Out of Class                                      | 13 | 8  | 104  |
| Special Course Internship (Work Placement)                    |    |    |      |
| Homework Assignments                                          |    |    | 0    |
| Quizzes/Studio Critics                                        | 3  | 6  | 18   |
| Project                                                       | 1  | 20 | 20   |
| Presentations / Seminar                                       | 1  | 6  | 6    |
| Mid-Terms (Examination Duration + Examination Prep. Duration) | 1  | 18 | 18   |
| Final (Examination Duration + Examination Prep. Duration)     | 0  | 0  | 0    |
| <b>Total Workload</b>                                         |    |    | 214  |
| <b>Total Workload / 30(h)</b>                                 |    |    | 7.13 |
| <b>ECTS Credit</b>                                            |    |    | 7    |

|             |      |
|-------------|------|
| Extra Notes | None |
|-------------|------|